# Foundational Discovery 

Fifty years ago, Peter Nowell and David Hungerford published an article about an unusually small and defective chromosome they found in leukocytes present in patients with a form of blood cancer. Their findings would change the way cancer is understood.
t all started, if Peter C. Nowell, M.D. '52, can be believed, back in 1956, when he embarked on what he has described as "some poorly defined studies of leukemia, looking at the growth and differentiation of human leukemic cells in irradiated mice and in vitro." He has written about his "remarkable lack of manual dexterity in the laboratory." Once, he even characterized his experiments as "diddling around with leukemic cells in culture." Not much there, one might assume?

Most observers would beg to differ.
In his more than half a century as a member of Penn's medical faculty, Nowell, the Gaylord P. and Mary Louise Harnwell Emeritus Professor of Pathology and Laboratory Medicine, has made his mark on the School of Medicine, the University of Pennsylvania, and biomedicine in general. He has received many honors among the most notable the Albert Lasker Medical Research Award, often considered the American Nobel Prize. Other honors include the Parke Davis Award in Experimental Pathology, the Robert de Villiers Award of the Leukemia Society of America,
and the Fred Stewart Award from the Memorial Sloan-Kettering Cancer Center. In addition, he has been elected to the Institute of Medicine, the National Academy of Sciences, and the American Academy of Arts and Sciences.

But 2010 has been a particularly busy time for Nowell, whose work is being celebrated with fresh vigor. The reason? 2010 is the 50th anniversary of the discovery of the Philadelphia chromosome by Nowell and the late David Hungerford, a graduate student at the Institute for Cancer Research in Fox Chase. (He went on to earn his Ph.D. degree from Penn.) Nowell may have written about the first steps toward this major discovery in his characteristically modest way, but there is no doubting the vigor and tenacity with which he and Hungerford developed their finding - or, as subsequently became clear, the significance of the Philadelphia chromosome in medical history.

What they discovered was that cells Nowell had taken from patients with chronic myelogenous leukemia (CML)
had an altered, minute chromosome. They published their finding in Science "with caution," Nowell has written, and the techniques did not exist then to determine whether the minute chromosome results from a deletion or a translocation.

At the time of their discovery, most scientists believed cancer was caused by viruses and did not have a genetic basis. Indeed, the Nowell-Hungerford paper in Science was not immediately embraced. But what it showed, according to the Lasker Foundation, was "the first clear evidence that a particular chromosome can lead to a population or clone of identical cells that accumulate in numbers to form a deadly malignancy." The researchers were the first to describe a consistent cytogenetic abnormality associated with malignancy - subsequently christened the Philadelphia chromosome. John Tomaszewski, M.D. '77, G.M.E. 83, the interim chair of Penn's Department of Pathology and Laboratory Medicine and a former student of Nowell's, describes it as "a discovery that changed in a very significant way how we think about cancer."


The two discoverers of the Philadelphia chromosome, photographed in the early 1960s. David Hungerford is on the right.

Building on Nowell's work, scientists later discovered the gene that causes CML; more recently, too, scientists were able to produce Gleevec, a drug that can block the effects of the gene and cure the disease in a great proportion of cases.

## Honors and More Honors

But back to this year's honors. Philadelphia's Franklin Institute presented Nowell with the 2010 Benjamin Franklin

Nowell described it in his "personal perspective" called "From Chromosomes to Oncogenes" (1993): "Subsequently, PHA combined with improved hypotonic solutions and the air-drying technique, described in collaboration with Paul Moorhead and Bill Mellman as well as Dave Hungerford, became the standard lymphocyte culture method that remains widely used for routine constitutional chromosome studies."

